LCD屏幕IC绑定前等离子清洗

等离子清洗一般是利用激光、微波、电晕放电、热电离、弧光放电等多种方式将气体激发成等离子状态。

在等离子清洗应用中,主要是利用低压气体辉光等离子体。一些非聚合性无机气体(Ar2、N2、H2、O2等)在高频低压下被激发,产生含有离子、激发态分子,自由基等多种活性粒子。一般在等离子清洗中,可把活化气体分为两类,一类为惰性气体的等离子体(如Ar2、N2等);另一类为反应性气体的等离子体(如O2、H2等)。这些活性粒子能与表面材料发生反应,其反应过程如下:

电离——气体分子——激发——激发态分子——清洗——活化表面

等离子产生的原理如下

从上图可以看出,给一组电极施以射频电压(频率约为几十兆赫兹),电极之间形成高频交变电场,区域内气体在交变电场的激荡下,产生等离子体。活性等离子对被清洗物进行表面物理轰击与化学反应双重作用,使被清洗物表面物质变成粒子和气态物质,经过抽真空排出,而达到清洗目的。

等离子清洗的清洗过程从原理上分为两个过程
过程1为:有机物的去除
首先是利用等离子的原理将气体分子激活:
O2→ O + O+2e-,?O+ O2 → O3,?O3 → O + O2
然后利用O,O3与有机物进行反应,达到将有机物排除的目的:
有机物+ O,O3→ CO2 + H2O
过程2为:表面的活化
首先是利用等离子的原理将气体分子激活:
O2→ O + O+2e-,?O+ O2 → O3,?O3 → O + O2
然后利用O,O3含氧官能团的表面活化作用,来改善材料的粘着性和湿润性能,其反应为:
R?+O?→RO?
R?+O2→ROO?
在实际使用中,考虑到生产成本及实际使用稳定性,一般使用净化的ADC(压缩空气)、O2、N2,只有在一些特殊场合才使用氩气。这是利用等离子体中的氧气的游离基的运动使表面达到亲水基化。当形成这一亲水基时,等离子氧游离基与基板表面的碳结合生成CO2,从而除去有机物质。
等离子清洗技术能够清除金属、陶瓷、塑料、玻璃表面的有机污染物,可以明显改变这些表面的粘接性及焊接强度。离子化过程能够容易地控制和安全地重复实现。可以说,有效的表面处理对于产品的可靠性或过程效率的提高是至关重要的,等离子技术也是目前最理想的技术。通过表面活化,等离子技术可以改善绝大多数物质的性能:洁净度、亲水性、斥水性、粘结性、标刻性、润滑性、耐磨性。

 

 

 

 

 

 

 

 

 

等离子清洗在COG-LCD组装技术中的应用

LCD的COG组装过程,是将裸片IC贴装到ITO玻璃上,利用金球的压缩与变形来使ITO玻璃上的引脚与IC上的引脚导通。由于精细线路技术的不断发展,目前已经发展到生产Pitch为20μm、线条为10μm的产品。这些精细线路电子产品的生产与组装,对ITO玻璃的表面清洁度要求非常高,要求产品的可焊接性能好、焊接牢固、不能有任何有机与无机的物质残留在ITO玻璃上来阻止ITO电极端子与IC BUMP的导通性,因此,对ITO玻璃的清洁显得非常重要。在目前的ITO玻璃清洁工艺中,大家都在尝试利用各种清洗剂(酒精清洗、棉签+柠檬水清洗、超声波清洗)进行清洗,但由于清洗剂的引入,会导致由于清洗剂的引入而带来其他的相关问题,因此,探索新的清洗方法成为各厂家的努力方向。通过逐步的试验,利用等离子清洗的原理来对ITO玻璃进行表面清洁,是比较有效的清洁方法。
在对液晶玻璃进行的等离子清洗中,使用的活化气体是氧的等离子体,它能除去油性污垢和有机污染物粒子,因为氧等离子体可将有机物氧化并形成气体排出。它的唯一问题是需要在去除粒子后加入一个除静电装置,其清洗工艺如下:

 

 

 

 

 

 

 

 

 

吹气--氧等离子体--除静电
  
通过干式洗净工艺后的LCD及其电极端子ITO,洁净度、粘结性得到大大改善。